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Abstract

The particle swarm optimization (PSO) algorithm, in which individuals collaborate with their interacted neighbors like bird
flocking to search for the optima, has been successfully applied in a wide range of fields pertaining to searching and
convergence. Here we employ the scale-free network to represent the inter-individual interactions in the population, named
SF-PSO. In contrast to the traditional PSO with fully-connected topology or regular topology, the scale-free topology used in
SF-PSO incorporates the diversity of individuals in searching and information dissemination ability, leading to a quite
different optimization process. Systematic results with respect to several standard test functions demonstrate that SF-PSO
gives rise to a better balance between the convergence speed and the optimum quality, accounting for its much better
performance than that of the traditional PSO algorithms. We further explore the dynamical searching process
microscopically, finding that the cooperation of hub nodes and non-hub nodes play a crucial role in optimizing the
convergence process. Our work may have implications in computational intelligence and complex networks.
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Introduction

Biological entities and natural processes have always been the

source of inspiration for the resolution of many real-world

applications, one of which is to search the optimum of a problem

under some certain conditions via the evolution of a population,

namely the nature-inspired optimization algorithm. The advan-

tages of self-adaption, self-organizing and self-learning in natural-

inspired optimization approaches allows us to address many

challenging problems pertaining to complex systems that cannot

be solved by traditional methods. Hence much effort has been

dedicated to the nature-inspired optimization algorithms in the last

decades, as summarized in several reviews for succinctly recent

advances on this topic [1–3].

Particle swarm optimization (PSO) is a typical nature-inspired

optimization algorithm proposed by Kennedy and Eberhart [4],

which is inspired by the social behavior of swarms such as bird

flocking or fish schooling [5]. In nature, a bird usually adjusts its

movement to find a better position in the flocking according to its

own experience and the experience of birds nearby. In PSO, each

artificial particle has its own position and updates its velocity

according to the attractiveness of its best previous position and the

best previous position of its direct interacted particles. Conse-

quently, a group of interacted particles (the population size is

commonly selected in the range 20–50 [1,6–9]) cooperate with

each other to search for an optimum in the solution space.

Since PSO was proposed, it continuously draws attention in the

field of nature-inspired optimization. Shi and Eberhart [6]

introduced the inertia weight coefficient to damp the velocity of

particles iteratively and thus the scope of the search can be better

controlled. Several years later, Clerc and Kennedy [7] proposed a

strategy for the placement of constriction coefficients and derived a

reasonable set of parameters. They proved that PSO with

constrictions is algebraically equivalent to PSO with inertia weight

coefficient from a theoretical way. The ‘‘constriction’’ version PSO

has been the canonical particle swarm algorithm today. Moreover,

Mendes and Kennedy [8] indicated that a particle is not only

simply influenced by the best neighbor so that they introduced the

fully informed PSO, in which particles are affected by all their

neighbors. Kennedy et al. [9,10] found that PSO with large

neighborhood would perform better on simple problems, while

PSO with small neighborhood might perform better on complex

problems. Peram et al. [11] took distance into account and

proposed the fitness-distance-ratio based PSO that combats the

problem of premature convergence, in which particles move

towards nearby neighbors with better fitness instead of the global

best solution. Due to its effectiveness and simplicity in implemen-

tation, PSO has been widely applied in solving many practical

optimization problems such as transportation [12], biomedicine

[13,14], power systems [15,16], communication system [17,18],

electronics and electromagnetics [19,20].

However, in previous literatures about PSO, the particles are

completely [4,21] or regularly interacted [8,10]. Since the

discovery of small-world phenomenon by Watts and Strogatz

[22] and scale-free property by Barabási and Albert [23] a decade

ago, it has been realized that most real networks are neither fully

connected networks nor homogeneous regular networks, but of

small-world and scale-free topological characteristics. Much

evidence has demonstrated that the structural properties play

key roles in dynamical processes taking place on complex networks

[24–26], e.g., in the evolutionary game dynamics, cooperators

cannot survive on fully-connected networks, but some cooperators

may have the chance to establish clusters to against the invasion of
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defectors and survive on a regular lattice. Strikingly, scale-free

topology can lead to the emergence and domination of cooper-

ation [27–29]. Such previous findings prompt us to wonder how

scale-free topology that captures the interaction pattern among

particles affects the PSO and if scale-free topology can offer better

performance of the optimization process. To answer these

interesting questions, we proposed a SF-PSO, in which scale-free

network that incorporates the diversity of individuals is exploited

to better mimic the real situation and improve the traditional

PSO. We find that the SF-PSO balances the convergence speed

and the solution quality, resulting in a much higher optimization

performance than traditional PSO. We substantiate our findings

and validate the SF-PSO by systematic analysis associated with a

variety of benchmark functions used in the literature.

Materials and Methods

Canonical PSO Algorithm
We adopt the framework of the canonical PSO and give a brief

introduction. Suppose the size of the population is N, where each

Table 1. Optimization benchmark functions.

Function name Formula D Range [xmin, xmax] Optimum
Goal for
function

Sphere f1(xi)~
PD

d~1 (xi
d )

2 30 [2100,100]D 0 0.01

Rosenbrock f2(xi)~
PD{1

d~1 (100(xi
dz1{(xi

d )2)2z(xi
d{1)2) 30 [230,30]D 0 100

Rastrigin f3(xi)~
PD

d~1 ((xi
d )2{10 cos (2pxi

d )z10) 30 [25.12,5.12]D 0 100

Griewank
f4(xi)~

1
4000

PD
d~1 (xi

d )2{PD
d~1 cos

xi
d

ffiffiffi
d
p z1

30 [2600,600]D 0 0.05

Quartic f5(xi)~
PD

d~1 d(xi
d )

4
zrandom½0,1) 30 [21.28,1.28]D 0 0.05

All functions are implemented in 30 dimensions and are minimization problems. The optimum is the best solution for the function. The goal for function is used to
evaluate the optimization is successful or not. The algorithm is run for 5,000 iterations. If the goal is not met by that time, it is considered that the goal will never be met
and the optimization is unsuccessful. f1 and f2 are unimodal functions; f3 and f4 are multimodal functions; f5 is the noise test function and is also unimodal function.
doi:10.1371/journal.pone.0097822.t001

Figure 1. Networks with different values of K (the average degree). The network density grows from left to right. Here (a) is a ring-like
network and (d) is the fully connected network.
doi:10.1371/journal.pone.0097822.g001

Figure 2. Networks with different values of H (the network heterogeneity). H~
PN

i~1

K2
i =(N|K2), where K is the average degree of the

topology and Ki is the degree of particle i. The network heterogeneity decreases from left to right, from up to bottom.
doi:10.1371/journal.pone.0097822.g002
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particle i has a position xi~½xi
1,:::xi

d ,:::xi
D�[RD and a velocity

vi~½vi
1,:::vi

d ,:::vi
D�[RD in the D-dimensional solution space.

Here pi is particle i0s best previous position and pg is the best

previous position of the best performer in i0s neighborhood. pi and

pg is updated iteratively. The particles are manipulated according

to the following equation:

vi
d~x|½vi

dzc1|r1|(pi
d{xi

d )zc2|r2|(pg
d{xi

d )� ð1Þ

xi
d~xi

dzvi
d ð2Þ

where c1 and c2 are the acceleration coefficients, r1 and r2 are two

uniformly distributed random numbers which are separately

generated in the range [0,1]. x is the constriction coefficient to

control the convergence speed of the population [6].

Figure 3. The comprehensive performance criterion S vs. the
average degree K, (a). The comprehensive performance criterion S vs.
the heterogeneity H, (b). The size of the population N is 50 and each
point is averaged over 100 times. Algorithm runs for 5,000 iterations
each time.
doi:10.1371/journal.pone.0097822.g003 Figure 4. A typical BA scale-free network with: m0 = 4, m = 2 and

N = 50, (a). The cumulative degree distribution of the BA scale-free
network, (b).
doi:10.1371/journal.pone.0097822.g004

Table 2. Performance of three PSOs.

F-PSO SF-PSO R-PSO

R f1 6:67|10{100 2:67|10{65 7:20|10{47

f2 1:47|101 9:64|100 1:31|101

f3 6:39|101 4:72|101 6:08|101

f4 1:67|10{2 6:50|10{3 5:42|10{3

f5 3:65|10{3 3:41|10{3 9:24|10{3

S �1:67|10{1 {2:09|10{1 �1:35|10{1

The size of the population N is 50 and each value is averaged by 100 times. Algorithm runs for 5,000 iterations each time. The results of SF-PSO correspond to the
average over 10 network configurations with m0 = 4, m = 2.
doi:10.1371/journal.pone.0097822.t002
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The first component of Eq. (1) stands for the previous velocity

that provides particle the momentum to search the solution space.

The second component is the ‘‘self-cognitive’’ part that particle

learns from the best previous position of itself. The third

component, known as ‘‘social-cognitive’’ part, represents how

particle optimizes the position by learning from the best previous

position of its neighbors. Following common practices,

c1~c2~2:05 and x~0:7298 [1,8,30,31].

Benchmark Functions
Benchmark functions are often used to evaluate the perfor-

mance of optimization algorithms [8,10]. The formula, the

number of dimensions, the admissible range of the variable, the

optimum and the goal values are summarized in Table 1. We use

all these representative functions to test the optimization

performance of our algorithm in comparison with traditional

PSOs.

Comparative Study of Different Topologies
In previously established PSOs, the population is assumed to be

completely or regularly connected. However, the commonly

observed structural characteristics in complex networks motivate

us to explore the effects of various topologies on the performance

of PSO. Firstly, we use the topologies from ring to fully connected

to test the performance variation of regular topologies with

different network densities (Figure 1). Secondly, we design a

graphical scheme that enables a continuously transformation from

a heterogeneous star-like network to a homogeneous ring-like

network to examine the effect of network heterogeneity (Figure 2).

All the topologies are tested in the framework of PSO for the

optimization of five benchmark functions (Table 1). We use the

comprehensive performance criterion S in Refs. [8,10] to evaluate

the performance of different topologies. Since different functions

are scaled differently, it is impossible to combine raw results from

different functions. In this situation, we standardize the results of

each function to a mean of 0.0 and standard deviation of 1.0.

Thus, all results from different functions are normalized to the

same scale. As all of these functions involve minimization, a

negative result after standardization is better than the average.

After standardizing each function separately, we can combine

them and find the average as the value of S.

As shown in Figure 3(a), neither the fully connected topology

nor ring topology performs the best. The information dissemina-

tion of fully connected topology is too fast to be able to escape

from the local optima. The ring topology, on the contrary,

prohibits the achievement of convergence, accounting for its bad

performance. Topology with medium density can achieve the best

result by making a balance of convergence speed and optimum

quality (e.g., K = 12). From Figure 3(b), we can also find that a

topology with a moderate heterogeneity performs better (e.g.,

H = 4.92). In high-heterogeneous topology, e.g. star-like network, a

hub particle holds the dominate position and it can influence most

of the population due to its large degree. Particles will soon

converge to the hub, resulting in the tragedy of premature

convergence. In homogeneous topology, e.g. ring network,

however, no particle has a significant effect on the whole

population. The convergence speed is too slow to induce good

performance. Based on these preliminary results, we infer that

network with moderate density and heterogeneity facilitates PSO.

SF-PSO Model
In 1999, Barabási and Albert found the scale-free property in

real networked systems and proposed the well-known Barabási–

Albert (BA) scale-free model whose generating mechanism can be

Table 3. Convergence speed of three PSOs.

F-PSO SF-PSO R-PSO

Q f1 313 502 695

f2 595 665 861

f3 157 266 410

f4 282 457 656

f5 357 475 855

The size of the population N is 50 and each value is averaged by 100 times.
Algorithm runs for 5,000 iterations each time. The results of SF-PSO correspond
to the average over 10 network configurations with m0 = 4, m = 2.
doi:10.1371/journal.pone.0097822.t003

Figure 5. Optimization process of three PSOs on Rastrigin
function. The size of the population N is 50. The network parameters
of SF-PSO are m0 = 4, m = 2. Algorithm runs for 5,000 iterations. We have
also examined other benchmark functions, and the results are alike.
doi:10.1371/journal.pone.0097822.g005

Figure 6. The black square symbols stand for the average
degree of particle i0s neighbors Ki

0 and the red circle symbols
stand for the average degree of neighbors that particles learn
from Ki

00 . Each data is averaged by 100 times on 10 network
configurations with m0 = 4, m = 2 and N = 50. Algorithm runs for 5,000
iterations each time.
doi:10.1371/journal.pone.0097822.g006
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described as ‘‘growth’’ and ‘‘preferential attachment’’ [23]:

starting with m0 connected nodes, at each step a new node is

added with m (m,m0) edges that link to m different existing nodes

and the probability Pi that a new node connects to node i is

related to i0s degree Ki:

Pi~Ki=
X

j
Kj ð3Þ

where j runs over all the existing nodes. An important

characteristic of scale-free networks is the degree distribution

P(K), which is defined as the proportion of nodes in the network

with degree K, and it can be described by a power law with a

simple form: P(K)~K{c. A variety of empirical researches have

revealed that numerous real networks are actually scale-free

networks [32,33] and scale-free properties have a significant

impact on network dynamics [24–26].

A typical BA scale-free network is shown in Figure 4(a) and its

cumulative degree distribution is presented in Figure 4(b). We can

find that scale-free networks are neither dense as fully connected

networks nor sparse as ring networks. Meanwhile, scale-free

network is heterogeneous but not as heterogeneous as star-like

network. In the following, we adopt the scale-free network to

represent the individual interactions in PSO, namely SF-PSO, and

further investigate its performance.

Experiments and Discussions of SF-PSO

Optimization Performance
The SF-PSO is compared to PSO with fully-connected network

(F-PSO) and PSO with ring network (R-PSO). The results are

displayed in Table 2. We employ the main solution quality

criterion R, which is the best solution at the end of the

optimization, to examine the performance of algorithms. F-PSO

obtains the best solution quality on f1, while SF-PSO ranks only

second to it. SF-PSO obtains the best solutions on f2, f3 and f5,

which means that SF-PSO can achieve high quality solutions on

unimodal function (f2), multimodal function (f3) and noise function

(f5). R-PSO achieves the best on f4 while SF-PSO is just a little

behind. Here we also examine the comprehensive performance

criterion S. The result turns out that SF-PSO is remarkably better

than other two PSOs, where SF-PSO is 25% smaller than F-PSO

and 54% smaller than R-PSO. Obviously, SF-PSO’s performance

is outstanding according to solution quality criterion R and

comprehensive performance criterion S.

Figure 8. The information dissemination ability of particles with different degrees. (a) IK (t) vs. iteration t. IK (t)~ 1
nK

P
i[rK

Li(t), where

Li(t) is the times that particle i is learned by its neighbors at iteration t, rK is the collection of particles with degree K and nK is the size of rK . (b) IK

vs. particle’s degree K. IK is the average performance of particles in the steady state. (c) IK
0(t) vs. iteration t. IK

0(t)~IK (t)=K . (d) IK vs. particle’s
degree K. IK

0~IK=K . Each data is averaged by 1,000 times. The network parameters of SF-PSO are N = 50, m0 = 4, m = 2. Algorithm runs for 5,000
iterations each time.
doi:10.1371/journal.pone.0097822.g008

Figure 7. The variation of relative solution quality RK
0(t). Each

data is averaged by 1,000 times. The network parameters of SF-PSO are
N = 50, m0 = 4, m = 2. Algorithm runs for 5,000 iterations each time.
doi:10.1371/journal.pone.0097822.g007
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According to the ‘‘no free lunch’’ theorem [34], any elevated

performance over one aspect of problems is offset by performance

over another. Since SF-PSO performs better in solution quality

and comprehensive performance, there must be a cost in some

other aspects. Next, we examine another important performance

criterion of optimization algorithms, the convergence speed Q,

which is the number of iterations required to accomplish the goal

in Table 1. The results of three PSOs are shown in Table 3. It is

found that F-PSO is of the fastest convergence speed while R-PSO

is of the lowest. Due to the moderate network density and network

heterogeneity, SF-PSO converges a little slower than F-PSO but

faster than R-PSO. It is the ‘‘fate’’ of SF-PSO according to ‘‘no

free lunch’’ theorem.

Figure 5 shows the optimization process of three PSOs on

Rastrigin in detail. We see that, F-PSO converges faster than the

other two PSOs in the beginning. However, the population

converges on a poor local optimum due to its ‘‘overspeed’’. For the

R-PSO, the convergence speed at the early stage is the slowest, but

the final solution quality is better than F-PSO. SF-PSO balances

the convergence speed and solution quality, yielding the best

performance in the comparison.

Next we investigate the optimization microscopically to uncover

the underlying mechanism in SF-PSO that facilitates the

optimization process.

Search Process of SF-PSO
We suspect that the high-degree hubs and low-degree particles

may play different roles in the optimization process. To confirm

our speculation, we firstly explore what kind of neighbors that

particles tend to learn from. We define Ki
0 as the average degree of

particle i0s neighbors and define Ki
00~ 1

T

PT
t~1 Ki

00(t) as the

average degree of neighbors that particle i learn from during the

whole evolution, where T is the maximum iteration of the

optimization and Ki
00(t) is the degree of neighbor that particle i

learn from at iteration t. Figure 6 shows that Ki
00 is significantly

larger than Ki
0, indicating that particles are more likely to learn

from the neighbors with larger degree in their neighborhood, in

other words, particles tend to learn from hubs. In the following, we

use the scale-free network in Figure 4 to represent the interaction

topology of particles.

Since particles tend to learn from hubs, it is natural to examine

whether the hubs have high solution quality or not. We define

RK (t) as the solution quality of particles with degree K at iteration

t. Figure 7 represents the relative solution quality of particles with

degree K: RK
0(t)~RK (t)=RKmax

(t) iteratively, and Kmax is the

largest degree of population. We can find that at the early stage of

the optimization, there is insignificant solution quality difference

among particles with different degrees. As the optimization process

evolves, the gap emerges. Since the largest degree of the

population is 25, the relative solution quality of the particle with

degree 25 is always 1. The relative solution qualities of particles

with medium degrees (K = 8, 10) are between 1.0 and 1.1 at the

end of optimization, while the solution qualities of particles with

small degrees (K = 2, 3, 4) are above 1.1. It can be interpreted that

hubs can obtain much more information and explore larger space

due to its large degree.

Further, we focus on the influence of particles with different

degrees on information dissemination. The information dissemi-

nation ability of particles with degree K at iteration t is defined as

IK (t). Then, IK denotes the performance of particles’ information

dissemination ability with degree K in steady state. Figure 8(a)

shows the variation of information dissemination ability iteratively.

It is found that, the advantage of hubs become increasingly

significant during the evolution. Figure 8(b) shows that particles’

performance on information dissemination in the steady state.

Apparently, the performance of hubs is better than that of low-

degree particles. Thus, it is natural to claim that hub particles play

a crucial role on the information dissemination of PSO. To get rid

of the influence of the degree factor, we further define two

averaged indices: IK
0(t) and IK

0. As Figure 8(c) shows, in the

beginning of the evolution, IK
0(t) is around 0.25 for all particles.

Figure 9. Particles’ contribution to population’s activity. (a) G(t)

vs. iteration t. G(t)~
PN

i~1 Bi(t), where Bi(t) is particle i0s ability of find
a better solution at iteration t. The value of Bi(t) is 1 when particle i0s
solution quality at iteration t Ri(t) is better than the previous best
solution found by its neighbors pg(t{1). On the contrary, the value of

Bi(t) is 0. (b) MK vs. particle’s degree K. MK~ 1
nK

PT
t~1

P
i[rK

Bi(t),

whererK is the collection of particles with degree K and nK is the size of
rK . (c) MK (t) vs. iteration t. MK (t)~ 1

nK

P
i[rK

Bi(t). Each data is

averaged by 1,000 times. The network parameters of SF-PSO are N = 50,
m0 = 4, m = 2. Algorithm runs for 5,000 iterations each time.
doi:10.1371/journal.pone.0097822.g009
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However, with the increment of time step, IK
0(t) of medium-

degree particles is still around 0.25 while high-degree particles and

low-degree particles are obviously divergent. From Figure 8(d), we

can also find that high-degree particles outperform low-degree

particles in steady state.

As we know, the optimization process of PSO (as well as many

other nature-inspired optimization algorithms, such as GA [35],

ACO [36] and SA [37]) is actually the process of finding ‘‘better

solutions’’. If the particles find more ‘‘better solutions’’, the

population is more active and facilitates the optimization of PSO.

In this regard, we investigate the particles’ ability on finding

‘‘better solutions’’, in other words, particles’ contribution to

maintaining the population’s activity.

Here, we define G(t) as the population’s contribution to its

activity at iteration t. As Figure 9(a) shows, G(t) firstly rises and

then declines. At the beginning of the optimization, all particles

are initialized with random positions and random velocities. As the

optimization process evolves, particles will gather to the better

regions in solution space according to the rule of PSO. If it is easier

for particles to find better solution, G(t) will rises. When the

optimization close to the optimum, it is hard to find better

solutions and the value of G(t) declines.

To distinguish the contribution of particles with different

degrees, we define MK as the average contribution of particles

with degree K. Surprisingly, we find that the value of MK

monotonously decreases with the increment of degree, indicating

that low-degree particles make more contribution to maintaining

the activity of the population. The only chance for a particle to

find a better solution is to defeat all neighbors according to the

definition of pg in Eq. (1). Although a high-degree hub particle can

collect more information through more links to obtain a

considerable good solution, it is harder to find a ‘‘better solution’’

since it has too many rivals. As to a low-degree particle, it is just

the opposite. Figure 9(c) shows the evolution of MK (t). The

variation tendencies for all particles are well accordance with G(t)
in Figure 9(a). Besides, the contribution of particles monotonously

decreases with the increment of degree. It is just the perfect

combination of guiding hub particles and low-degree particles who

keep the activity of population that makes outstanding perfor-

mance of our SF-PSO.

Conclusion
We have incorporated scale-free topology into the particle

swarm optimization, attempting to improve the optimization

process with respect to its solution quality and convergence

velocity. We have found that the scale-free topology that captures

the diversity of individuals leads to the balance between the

solution quality and the convergence efficiency, which outper-

forms the traditional particle swarm optimization algorithm based

on either fully-connected graph or regular graph. Interestingly, the

much better performance of our approach is attributed to the

cooperation between hub nodes and non-hub nodes, where the

former is of strong ability to ensure high solution quality and

guides the evolution direction, while the latter helps to maintain

the activity of the population for exploring the solution space and

escaping from local optima. Our findings suggest the paramount

importance of exploiting the diversity in population for achieving

better evolution pattern of swarm, which has many implications in

computational intelligence and controlling a variety of dynamical

processes taking place on complex networks.
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